Journal papers

  1. O.N. Kirillov, M. Levi (2017) A Coriolis force in an inertial frame.
    Nonlinearity, 30(3): 1109-1119.
    url   pdf
  2. D. Bigoni, O.N. Kirillov, D. Misseroni, G. Noselli, M. Tommasini (2017) Detecting singular weak-dissipation limit for flutter onset in reversible systems. Physical Review Letters, subm. arXiv:1706.02377
    url   pdf
  3. O.N. Kirillov, I. Mutabazi (2017) Short wavelength local instabilities of a circular Couette flow with radial temperature gradient.
    Journal of Fluid Mechanics, 818: 319-343.
    url   pdf
  4. O.N. Kirillov (2017) Singular diffusionless limits of double-diffusive instabilities in magnetohydrodynamics. Proceedings of the Royal Society of London A, accepted for publication.
    url   pdf
  5. M. Tommasini, O. N. Kirillov, D. Misseroni, and D. Bigoni (2016) The destabilizing effect of external damping: Singular flutter boundary for the Pfluger column with vanishing external dissipation. Journal of the Mechanics and Physics of Solids, 91: 204-215.
    url   pdf
  6. O.N. Kirillov, M. Levi (2016) Rotating saddle trap as Foucault’s pendulum. American Journal of Physics, 84(1): 26-31
    url   pdf
  7. O.N. Kirillov (2016) Dissipation-induced instabilities in magnetized flows. In: Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3. Vol. 60. Contemporary Mathematics. Fundamental Directions. Moscow: PFUR.
    url   pdf
  8. F. Stefani, O.N. Kirillov (2015) Destabilization of rotating flows with positive shear by azimuthal magnetic fields.
    Physical Review E, 92: 051001(R)
    url   pdf
  9. O.N. Kirillov, F. Stefani, Y. Fukumoto (2014) Local instabilities in magnetized rotational flows: A short-wavelength approach. Journal of Fluid Mechanics, 760: 591- 633
    url   pdf
  10. O.N. Kirillov, N. Challamel, F. Darve, J. Lerbet, F. Nicot (2014) Singular divergence instability thresholds of kinematically constrained circulatory systems. Physics Letters A, 378: 147-152
    url   pdf
  11. O.N. Kirillov, F. Stefani, Y. Fukumoto (2014) Instabilities of rotational flows in azimuthal magnetic fields of arbitrary radial dependence. Fluid Dynamics Research, 46: 031403 (14 pp)
    url   pdf
  12. J. Lerbet, M. Aldowaji, N. Challamel, O.N. Kirillov, F. Nicot, F. Darve (2014) Geometric degree of non-conservativity. Mathematics and Mechanics of Complex Systems, 2 (2): 123–139
    url   pdf
  13.  O.N. Kirillov, M.L. Overton (2013) Robust stability at the swallowtail singularity. Frontiers in Physics, 1: 24
    url   pdf
  14. O.N. Kirillov, F. Stefani (2013Extending the range of the inductionless magnetorotational instability. Physical Review Letters, 111(6): 061103
    url   pdf
  15. O.N. Kirillov (2013Stabilizing and destabilizing perturbations of PT -symmetric indefinitely damped systems. Philosophical Transactions of the Royal Society A, 371: 20120051
    url   pdf
  16. J. Lerbet, O. Kirillov, M. Aldowaji, N. Challamel, F. Nicot, F. Darve (2013Additional constraints may soften a non-conservative structural system: Buckling and vibration analysis. International Journal of Solids and Structures, 50: 363-370
    url   pdf
  17. O.N. Kirillov (2013Exceptional and diabolical points in stability questions. Fortschritte der Physik – Progress in Physics, 61(2-3): 205-224
    url  pdf
  18. O.N. Kirillov, F. Stefani (2012) WKB thresholds of standard, helical, and azimuthal magnetorotational instability. Proceedings of the International Astronomical Union, 8: 233-234
    url   pdf
  19. O.N. Kirillov, F. Stefani, Y. Fukumoto (2012A unifying picture of helical and azimuthal MRI, and the universal significance of the Liu limit. The Astrophysical Journal, 756(83): 6pp
    url   pdf
  20. O.N. Kirillov (2012PT-symmetry, indefinite damping and dissipation-induced instabilities. Physics Letters A, 376(15): 1244-1249
    url   pdf
  21. O.N. Kirillov, F. Stefani (2012Standard and helical magnetorotational instability: How singularities create paradoxical phenomena in MHD. Acta Applicandae Mathematicae, 120(1): 177-198
    url   pdf
  22. O.N. Kirillov (2012Erratum to: Brouwer’s problem on a heavy particle in a rotating vessel: Wave propagation, ion traps, and rotor dynamics [Physics Letters A 375 (2011) 1653-1660] Physics Letters A, 376: 665-666
    url   pdf
  23. O. N. Kirillov, F. Verhulst (2012). Authors’ reply to A remark to the paper by O. N. Kirillov and F. Verhulst Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? [Zamm 90, No. 6, 462488 (2010)]. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift fur Angewandte Mathematik und Mechanik 92(3): 254–254
    url   pdf
  24. O.N. Kirillov, D.E. Pelinovsky, G. Schneider  (2011) Paradoxical transitions to instabilities in hydromagnetic Couette-Taylor flows. Physical Review E, 84(6): 065301(R) (Rapid communication)
    url   pdf
  25. O.N. Kirillov, F. Stefani (2011Paradoxes of magnetorotational instability and their geometrical resolution. Physical Review E, 84(3): 036304
    url   pdf
  26. O.N. Kirillov (2011Brouwer’s problem on a heavy particle in a rotating vessel: wave propagation, ion traps, and rotor dynamics. Physics Letters A, 375: 1653-1660
    url   pdf
  27. B. Dietz, H. L. Harney, O.N. Kirillov, M. Miski-Oglu, A. Richter, F. Schaefer (2011Exceptional Points in a Microwave Billiard with Time-Reversal Invariance Violation. Physical Review Letters, 106(15): 150403
    url   pdf
  28. O.N. Kirillov, F. Verhulst (2011Dissipation-induced instabilities and symmetry. Acta Mechanica Sinica, 27(1): 2-6
    url   pdf
  29. O. N. Kirillov (2011) Singularities in Structural Optimization of the Ziegler Pendulum. Acta Polytechnica, 51(4): 32-43
    url   pdf
  30. O.N. Kirillov (2011) Sensitivity of sub-critical mode-coupling instabilities in non-conservative rotating continua to stiffness and damping modifications. International Journal of Vehicle Structures and Systems, 3(1): 1-13
    url   pdf
  31. O.N. Kirillov, F. Stefani (2010) On the relation of standard and helical magnetorotational instability. The Astrophysical Journal, 712: 52-68
    url   pdf
  32. I. Hoveijn, O.N. Kirillov (2010) Singularities on the boundary of the stability domain near 1:1-resonance. Journal of Differential Equations, 248(10):  2585-2607
    url   pdf
  33. O.N. Kirillov, F. Verhulst (2010) Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? Zeitschrift fur angewandte Mathematik und Mechanik-ZAMM, 90(6): 462 – 488 (Editor’s choice)
    url   pdf
  34. O.N. Kirillov (2010) Eigenvalue bifurcation in multiparameter families of non-self-adjoint operator matrices. Zeitschrift fur angewandte Mathemtik und Physik-ZAMP, 61(2): 221-234
    url   pdf
  35. F. Verhulst, O.N. Kirillov (2009) Bottema opende Whitney’s paraplu. Nieuw Archief voor Wiskunde, 5/10(4): 250-254
    url   pdf 
  36. O.N. Kirillov (2009) Campbell diagrams of weakly anisotropic flexible rotors. Proc. of the Royal Society A 465(2109): 2703-2723
    url   pdf
  37. O.N. Kirillov (2009) Unfolding the conical zones of the dissipation-induced subcritical flutter for the rotationally symmetrical gyroscopic systems. Physics Letters A 373(10): 940-945
    url   pdf
  38. O.N. Kirillov (2009) Perspectives and obstacles for optimization of brake pads with respect to stability criteria. Int. J. of Vehicle Design, 51(1/2): 143-167
    url   pdf
  39. O.N. Kirillov, U. Guenther, F. Stefani (2009) Determining role of Krein signature for three dimensional Arnold tongues of oscillatory dynamos. Physical Review E, 79: 1 016205
    (Selected for PRE Kaleidoscope)
    url   pdf
  40. O.N. Kirillov (2009) How to play a disc brake: A dissipation-induced squeal. SAE International Journal of Passenger Cars – Mechanical Systems, 1(1): 863-876
    url   pdf
  41. G. Spelsberg-Korspeter, D. Hochlenert, O.N. Kirillov, P. Hagedorn (2009In- and out-of-plane vibrations of a rotating plate with frictional contact: Investigations on squeal phenomena. Transactions of the ASME – Journal of Applied Mechanics, 76(4): 041006
    url   pdf
  42. O.N. Kirillov (2008) Subcritical flutter in the acoustics of friction. Proceedings of the Royal Society A, 464(2097): 2321-2339
    url   pdf
  43. G. Spelsberg-Korspeter, O.N. Kirillov, P. Hagedorn (2008) Modeling and stability analysis of an axially moving beam with frictional contact. Transactions of the ASME – Journal of Applied Mechanics, 75(3): 031001
    url   pdf
  44. O.N. Kirillov (2007) Gyroscopic stabilization in the presence of nonconservative forces. Doklady Mathematics, 76(2): 780-785
    url   pdf
  45. O.N. Kirillov (2007) Bifurcation of the roots of the characteristic polynomial and destabilization paradox in friction induced oscillations. Theoretical and Applied Mechanics, 34(2): 87-109
    url   pdf
  46. O.N. Kirillov (2007) On the stability of nonconservative systems with small dissipation. Journal of Mathematical Sciences,145(5): 5260-5270
    url   pdf
  47. O.N. Kirillov (2007) Destabilization paradox due to breaking the Hamiltonian and reversible symmetry. International Journal of Non-Linear Mechanics, 42(1): 71-87
    url   pdf
  48. U. Guenther, O.N. Kirillov, B.F. Samsonov, F. Stefani (2007) The spherically-symmetric α2-dynamo and some of its spectral peculiarities. Acta Polytechnica. 47(2-3): 75-81
    url   pdf
  49. O.N. Kirillov (2006) Gyroscopic stabilization of non-conservative systems. Physics Letters A, 359(3): 204-210
    url   pdf
  50. U. Guenther, O.N. Kirillov (2006) A Krein space related perturbation theory for MHD α2-dynamos and resonant unfolding of diabolical points. Journal of Physics A: Mathematical and General, 39: 10057-10076
    url   pdf
  51. A.A. Mailybaev, O.N. Kirillov, A.P. Seyranian (2006) Berry phase around degeneracies. Doklady Mathematics, 73(1): 129-133
    url   pdf
  52. O.N. Kirillov, A.A. Mailybaev, A.P. Seyranian (2005) Singularities of energy surfaces under non-Hermitian perturbations. Doklady Physics, 50(11): 577-582
    url   pdf
  53. A.A. Mailybaev, O.N. Kirillov, A.P. Seyranian (2005) Geometric phase around exceptional points. Physical Review A, 72: 014104
    url   pdf
  54. O.N. Kirillov, A.A. Mailybaev, A.P. Seyranian (2005) Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation. Journal of Physics A: Mathematical and General, 38(24): 5531-5546
    url   pdf
  55. A.P. Seyranian, O.N. Kirillov, A.A. Mailybaev (2005) Coupling of eigenvalues of complex matrices at diabolic and exceptional points. Journal of Physics A: Mathematical and General. 38(8): 1723-1740
    url   pdf
  56. O.N. Kirillov, A.P. Seyranian (2005) Instability of distributed nonconservative systems caused by weak dissipation. Doklady Mathematics, 71(3): 470-475
    url   pdf
  57. O.N. Kirillov, A.P. Seyranian (2005) The effect of small internal and external damping on the stability of distributed non-conservative systems. Journal of Applied Mathematics and Mechanics, 69(4): 529-552
    url   pdf
  58. O.N. Kirillov (2005) A theory of the destabilization paradox in non-conservative systems. Acta Mechanica, 174(3-4): 145-166
    url   pdf
  59. O.N. Kirillov, A.P. Seyranian (2005) Stabilization and destabilization of a circulatory system by small velocity-dependent forces. Journal of Sound and Vibration, 283(3-5): 781-800
    url   pdf
  60. O.N. Kirillov (2004) Destabilization paradox. Doklady Physics, 49(4): 239-245
    url   pdf
  61. O.N. Kirillov, A.P. Seyranian (2004) Collapse of the Keldysh chains and stability of continuous non-conservative systems. SIAM Journal on Applied Mathematics, 64(4): 1383-1407
    url   pdf
  62. A.P. Seyranian, O.N. Kirillov (2003) Effect of small dissipative and gyroscopic forces on the stability of nonconservative systems. Doklady Physics, 48(12): 679-684
    url   pdf
  63. O.N. Kirillov, A.P. Seyranian (2002) Solution to the Herrmann-Smith problem. Doklady Physics, 47(10): 767-771
    url   pdf
  64. O.N. Kirillov, A.P. Seyranian (2002) Metamorphoses of characteristic curves in circulatory systems. Journal of Applied Mathematics and Mechanics, 66(3): 371-385
    url   pdf
  65. O.N. Kirillov, A.P. Seyranian (2002) Collapse of Keldysh chains and the stability of non-conservative systems. Doklady Mathematics, 66(1): 127-131
    url   pdf
  66. O.N. Kirillov, A.P. Seyranian (2002A non-smooth optimization problem. Moscow University Mechanics Bulletin, 57(3): 1-6
    url   pdf
  67. A.P. Seyranian, O.N. Kirillov (2001) Bifurcation diagrams and stability boundaries of circulatory systems. Theoretical and Applied Mechanics, 26: 135-168
    url   pdf
  68. O.N. Kirillov, A.P. Seyranian (2001) Overlapping of frequency curves in non-conservative systems. Doklady Physics, 46(3): 184-189
    url   pdf
  69. O.N. Kirillov (1999) Optimization of stability of the flying bar. Young Scientists Bulletin – Applied Mathematics and Mechanics, 1(1): 64-78
    url   pdf

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s