Journal papers

  1. O.N. Kirillov, M. Levi (2017) A Coriolis force in an inertial frame.
    Nonlinearity, 30(3): 1109-1119.
    url   pdf
  2. D. Bigoni, O.N. Kirillov, D. Misseroni, G. Noselli, M. Tommasini (2017) Detecting singular weak-dissipation limit for flutter onset in reversible systems. Physical Review Letters, subm. arXiv:1706.02377
    url   pdf
  3. O.N. Kirillov, I. Mutabazi (2017) Short wavelength local instabilities of a circular Couette flow with radial temperature gradient.
    Journal of Fluid Mechanics, 818: 319-343.
    url   pdf
  4. O.N. Kirillov (2017) Singular diffusionless limits of double-diffusive instabilities in magnetohydrodynamics.
    Proceedings of the Royal Society of London A, 473(2205): 20170344.
    url   pdf
  5. M. Tommasini, O. N. Kirillov, D. Misseroni, and D. Bigoni (2016) The destabilizing effect of external damping: Singular flutter boundary for the Pfluger column with vanishing external dissipation. Journal of the Mechanics and Physics of Solids, 91: 204-215.
    url   pdf
  6. O.N. Kirillov, M. Levi (2016) Rotating saddle trap as Foucault’s pendulum. American Journal of Physics, 84(1): 26-31
    url   pdf
  7. O.N. Kirillov (2016) Dissipation-induced instabilities in magnetized flows. In: Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3. Vol. 60. Contemporary Mathematics. Fundamental Directions. Moscow: PFUR.
    url   pdf
  8. F. Stefani, O.N. Kirillov (2015) Destabilization of rotating flows with positive shear by azimuthal magnetic fields.
    Physical Review E, 92: 051001(R)
    url   pdf
  9. O.N. Kirillov, F. Stefani, Y. Fukumoto (2014) Local instabilities in magnetized rotational flows: A short-wavelength approach. Journal of Fluid Mechanics, 760: 591- 633
    url   pdf
  10. O.N. Kirillov, N. Challamel, F. Darve, J. Lerbet, F. Nicot (2014) Singular divergence instability thresholds of kinematically constrained circulatory systems. Physics Letters A, 378: 147-152
    url   pdf
  11. O.N. Kirillov, F. Stefani, Y. Fukumoto (2014) Instabilities of rotational flows in azimuthal magnetic fields of arbitrary radial dependence. Fluid Dynamics Research, 46: 031403 (14 pp)
    url   pdf
  12. J. Lerbet, M. Aldowaji, N. Challamel, O.N. Kirillov, F. Nicot, F. Darve (2014) Geometric degree of non-conservativity. Mathematics and Mechanics of Complex Systems, 2 (2): 123–139
    url   pdf
  13.  O.N. Kirillov, M.L. Overton (2013) Robust stability at the swallowtail singularity. Frontiers in Physics, 1: 24
    url   pdf
  14. O.N. Kirillov, F. Stefani (2013Extending the range of the inductionless magnetorotational instability. Physical Review Letters, 111(6): 061103
    url   pdf
  15. O.N. Kirillov (2013Stabilizing and destabilizing perturbations of PT -symmetric indefinitely damped systems. Philosophical Transactions of the Royal Society A, 371: 20120051
    url   pdf
  16. J. Lerbet, O. Kirillov, M. Aldowaji, N. Challamel, F. Nicot, F. Darve (2013Additional constraints may soften a non-conservative structural system: Buckling and vibration analysis. International Journal of Solids and Structures, 50: 363-370
    url   pdf
  17. O.N. Kirillov (2013Exceptional and diabolical points in stability questions. Fortschritte der Physik – Progress in Physics, 61(2-3): 205-224
    url  pdf
  18. O.N. Kirillov, F. Stefani (2012) WKB thresholds of standard, helical, and azimuthal magnetorotational instability. Proceedings of the International Astronomical Union, 8: 233-234
    url   pdf
  19. O.N. Kirillov, F. Stefani, Y. Fukumoto (2012A unifying picture of helical and azimuthal MRI, and the universal significance of the Liu limit. The Astrophysical Journal, 756(83): 6pp
    url   pdf
  20. O.N. Kirillov (2012PT-symmetry, indefinite damping and dissipation-induced instabilities. Physics Letters A, 376(15): 1244-1249
    url   pdf
  21. O.N. Kirillov, F. Stefani (2012Standard and helical magnetorotational instability: How singularities create paradoxical phenomena in MHD. Acta Applicandae Mathematicae, 120(1): 177-198
    url   pdf
  22. O.N. Kirillov (2012Erratum to: Brouwer’s problem on a heavy particle in a rotating vessel: Wave propagation, ion traps, and rotor dynamics [Physics Letters A 375 (2011) 1653-1660] Physics Letters A, 376: 665-666
    url   pdf
  23. O. N. Kirillov, F. Verhulst (2012). Authors’ reply to A remark to the paper by O. N. Kirillov and F. Verhulst Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? [Zamm 90, No. 6, 462488 (2010)]. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift fur Angewandte Mathematik und Mechanik 92(3): 254–254
    url   pdf
  24. O.N. Kirillov, D.E. Pelinovsky, G. Schneider  (2011) Paradoxical transitions to instabilities in hydromagnetic Couette-Taylor flows. Physical Review E, 84(6): 065301(R) (Rapid communication)
    url   pdf
  25. O.N. Kirillov, F. Stefani (2011Paradoxes of magnetorotational instability and their geometrical resolution. Physical Review E, 84(3): 036304
    url   pdf
  26. O.N. Kirillov (2011Brouwer’s problem on a heavy particle in a rotating vessel: wave propagation, ion traps, and rotor dynamics. Physics Letters A, 375: 1653-1660
    url   pdf
  27. B. Dietz, H. L. Harney, O.N. Kirillov, M. Miski-Oglu, A. Richter, F. Schaefer (2011Exceptional Points in a Microwave Billiard with Time-Reversal Invariance Violation. Physical Review Letters, 106(15): 150403
    url   pdf
  28. O.N. Kirillov, F. Verhulst (2011Dissipation-induced instabilities and symmetry. Acta Mechanica Sinica, 27(1): 2-6
    url   pdf
  29. O. N. Kirillov (2011) Singularities in Structural Optimization of the Ziegler Pendulum. Acta Polytechnica, 51(4): 32-43
    url   pdf
  30. O.N. Kirillov (2011) Sensitivity of sub-critical mode-coupling instabilities in non-conservative rotating continua to stiffness and damping modifications. International Journal of Vehicle Structures and Systems, 3(1): 1-13
    url   pdf
  31. O.N. Kirillov, F. Stefani (2010) On the relation of standard and helical magnetorotational instability. The Astrophysical Journal, 712: 52-68
    url   pdf
  32. I. Hoveijn, O.N. Kirillov (2010) Singularities on the boundary of the stability domain near 1:1-resonance. Journal of Differential Equations, 248(10):  2585-2607
    url   pdf
  33. O.N. Kirillov, F. Verhulst (2010) Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? Zeitschrift fur angewandte Mathematik und Mechanik-ZAMM, 90(6): 462 – 488 (Editor’s choice)
    url   pdf
  34. O.N. Kirillov (2010) Eigenvalue bifurcation in multiparameter families of non-self-adjoint operator matrices. Zeitschrift fur angewandte Mathemtik und Physik-ZAMP, 61(2): 221-234
    url   pdf
  35. F. Verhulst, O.N. Kirillov (2009) Bottema opende Whitney’s paraplu. Nieuw Archief voor Wiskunde, 5/10(4): 250-254
    url   pdf 
  36. O.N. Kirillov (2009) Campbell diagrams of weakly anisotropic flexible rotors. Proc. of the Royal Society A 465(2109): 2703-2723
    url   pdf
  37. O.N. Kirillov (2009) Unfolding the conical zones of the dissipation-induced subcritical flutter for the rotationally symmetrical gyroscopic systems. Physics Letters A 373(10): 940-945
    url   pdf
  38. O.N. Kirillov (2009) Perspectives and obstacles for optimization of brake pads with respect to stability criteria. Int. J. of Vehicle Design, 51(1/2): 143-167
    url   pdf
  39. O.N. Kirillov, U. Guenther, F. Stefani (2009) Determining role of Krein signature for three dimensional Arnold tongues of oscillatory dynamos. Physical Review E, 79: 1 016205
    (Selected for PRE Kaleidoscope)
    url   pdf
  40. O.N. Kirillov (2009) How to play a disc brake: A dissipation-induced squeal. SAE International Journal of Passenger Cars – Mechanical Systems, 1(1): 863-876
    url   pdf
  41. G. Spelsberg-Korspeter, D. Hochlenert, O.N. Kirillov, P. Hagedorn (2009In- and out-of-plane vibrations of a rotating plate with frictional contact: Investigations on squeal phenomena. Transactions of the ASME – Journal of Applied Mechanics, 76(4): 041006
    url   pdf
  42. O.N. Kirillov (2008) Subcritical flutter in the acoustics of friction. Proceedings of the Royal Society A, 464(2097): 2321-2339
    url   pdf
  43. G. Spelsberg-Korspeter, O.N. Kirillov, P. Hagedorn (2008) Modeling and stability analysis of an axially moving beam with frictional contact. Transactions of the ASME – Journal of Applied Mechanics, 75(3): 031001
    url   pdf
  44. O.N. Kirillov (2007) Gyroscopic stabilization in the presence of nonconservative forces. Doklady Mathematics, 76(2): 780-785
    url   pdf
  45. O.N. Kirillov (2007) Bifurcation of the roots of the characteristic polynomial and destabilization paradox in friction induced oscillations. Theoretical and Applied Mechanics, 34(2): 87-109
    url   pdf
  46. O.N. Kirillov (2007) On the stability of nonconservative systems with small dissipation. Journal of Mathematical Sciences,145(5): 5260-5270
    url   pdf
  47. O.N. Kirillov (2007) Destabilization paradox due to breaking the Hamiltonian and reversible symmetry. International Journal of Non-Linear Mechanics, 42(1): 71-87
    url   pdf
  48. U. Guenther, O.N. Kirillov, B.F. Samsonov, F. Stefani (2007) The spherically-symmetric α2-dynamo and some of its spectral peculiarities. Acta Polytechnica. 47(2-3): 75-81
    url   pdf
  49. O.N. Kirillov (2006) Gyroscopic stabilization of non-conservative systems. Physics Letters A, 359(3): 204-210
    url   pdf
  50. U. Guenther, O.N. Kirillov (2006) A Krein space related perturbation theory for MHD α2-dynamos and resonant unfolding of diabolical points. Journal of Physics A: Mathematical and General, 39: 10057-10076
    url   pdf
  51. A.A. Mailybaev, O.N. Kirillov, A.P. Seyranian (2006) Berry phase around degeneracies. Doklady Mathematics, 73(1): 129-133
    url   pdf
  52. O.N. Kirillov, A.A. Mailybaev, A.P. Seyranian (2005) Singularities of energy surfaces under non-Hermitian perturbations. Doklady Physics, 50(11): 577-582
    url   pdf
  53. A.A. Mailybaev, O.N. Kirillov, A.P. Seyranian (2005) Geometric phase around exceptional points. Physical Review A, 72: 014104
    url   pdf
  54. O.N. Kirillov, A.A. Mailybaev, A.P. Seyranian (2005) Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation. Journal of Physics A: Mathematical and General, 38(24): 5531-5546
    url   pdf
  55. A.P. Seyranian, O.N. Kirillov, A.A. Mailybaev (2005) Coupling of eigenvalues of complex matrices at diabolic and exceptional points. Journal of Physics A: Mathematical and General. 38(8): 1723-1740
    url   pdf
  56. O.N. Kirillov, A.P. Seyranian (2005) Instability of distributed nonconservative systems caused by weak dissipation. Doklady Mathematics, 71(3): 470-475
    url   pdf
  57. O.N. Kirillov, A.P. Seyranian (2005) The effect of small internal and external damping on the stability of distributed non-conservative systems. Journal of Applied Mathematics and Mechanics, 69(4): 529-552
    url   pdf
  58. O.N. Kirillov (2005) A theory of the destabilization paradox in non-conservative systems. Acta Mechanica, 174(3-4): 145-166
    url   pdf
  59. O.N. Kirillov, A.P. Seyranian (2005) Stabilization and destabilization of a circulatory system by small velocity-dependent forces. Journal of Sound and Vibration, 283(3-5): 781-800
    url   pdf
  60. O.N. Kirillov (2004) Destabilization paradox. Doklady Physics, 49(4): 239-245
    url   pdf
  61. O.N. Kirillov, A.P. Seyranian (2004) Collapse of the Keldysh chains and stability of continuous non-conservative systems. SIAM Journal on Applied Mathematics, 64(4): 1383-1407
    url   pdf
  62. A.P. Seyranian, O.N. Kirillov (2003) Effect of small dissipative and gyroscopic forces on the stability of nonconservative systems. Doklady Physics, 48(12): 679-684
    url   pdf
  63. O.N. Kirillov, A.P. Seyranian (2002) Solution to the Herrmann-Smith problem. Doklady Physics, 47(10): 767-771
    url   pdf
  64. O.N. Kirillov, A.P. Seyranian (2002) Metamorphoses of characteristic curves in circulatory systems. Journal of Applied Mathematics and Mechanics, 66(3): 371-385
    url   pdf
  65. O.N. Kirillov, A.P. Seyranian (2002) Collapse of Keldysh chains and the stability of non-conservative systems. Doklady Mathematics, 66(1): 127-131
    url   pdf
  66. O.N. Kirillov, A.P. Seyranian (2002A non-smooth optimization problem. Moscow University Mechanics Bulletin, 57(3): 1-6
    url   pdf
  67. A.P. Seyranian, O.N. Kirillov (2001) Bifurcation diagrams and stability boundaries of circulatory systems. Theoretical and Applied Mechanics, 26: 135-168
    url   pdf
  68. O.N. Kirillov, A.P. Seyranian (2001) Overlapping of frequency curves in non-conservative systems. Doklady Physics, 46(3): 184-189
    url   pdf
  69. O.N. Kirillov (1999) Optimization of stability of the flying bar. Young Scientists Bulletin – Applied Mathematics and Mechanics, 1(1): 64-78
    url   pdf
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s