1. O.N. Kirillov (2007Gyroscopic stabilization in the presence of nonconservative forces. Doklady Mathematics, 76(2): 780-785
    url   pdf
  2. O.N. Kirillov (2007Bifurcation of the roots of the characteristic polynomial and destabilization paradox in friction induced oscillations.Theoretical and Applied Mechanics, 34(2): 87-109
    url   pdf
  3. O.N. Kirillov (2007On the stability of nonconservative systems with small dissipation. Journal of Mathematical Sciences,145(5): 5260-5270
    url   pdf
  4. O.N. Kirillov (2007Destabilization paradox due to breaking the Hamiltonian and reversible symmetry. International Journal of Non-Linear Mechanics, 42(1): 71-87
    url   pdf
  5. U. Guenther, O.N. Kirillov, B.F. Samsonov, F. Stefani (2007The spherically-symmetric α2-dynamo and some of its spectral peculiarities.Acta Polytechnica. 47(2-3): 75-81
    url   pdf
  6. O.N. Kirillov (2007Stabilization and destabilization in non-conservative gyroscopic systems. Proceedings in Applied Mathematics and Mechanics (PAMM), 7(1): 4050001-4050002
    url   pdf
  7. U. Guenther, O.N. Kirillov (2007Asymptotic methods for spherically symmetric MHD α2-dynamos. Proceedings in Applied Mathematics and Mechanics (PAMM) 7(1): 4140023–4140024
    url   pdf
  8. O.N. Kirillov (2007Gyroscopic stabilization in presence of non-conservative forces. Proceedings of the 12th IFToMM World Congress in Mechanism and Machine Science, Besancon, June 18-21, 2007
    url   pdf

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s